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Abstract—Ubiquitous computing for innovative health-care 

systems, services and applications became more and more 

connected to Cloud systems and the applications required a 

scalable, reliable and secure environments, the containerized 

environments representing suitable solutions. In this paper we 

deal with the advantage of multi-agent systems and IoT for e-

health applications in scalable platforms. We investigated how 

Cloud-based model can be adopted. Thus, an architecture was 

designed for a medical data based intelligent system that processes 

the collected data and takes the right decisions based on them. This 

work also presents a drill down into the mobile client architecture 

focusing on the implementation of some of the simple periodic 

agents and combining them into complex periodic agents. The 

pulse-oximetry sensors were considered in this research. In this 

context, a heart rate simple periodic agent and a SpO2 simple 

periodic agent were developed. Our model considers that the data 

measured by the sensors will be used to monitor health status of a 

patient in real time or to discover threshold values for the data that 

can be further careful be analyzed and interpreted as a medical 

pre-diagnosis. (Abstract) 
Keywords—multi-agent systems; e-health systems; cloud 

computing; scalability. 

 

I.  INTRODUCTION 

IoT (Internet of Things) offers great solutions when talking 

about dealing with the increase of calculation power and 

computational intelligence in various devices. Their presence is 

remarked in several applications in e-health, most of them in 

patient surveillance area [1]. The data is processed in real-time 

and adjust to changing conditions, not only to collect and 

stream. 

Typically, in multi-agent systems (MAS), a mobile agent is 

a portion of autonomous software, capable of migrating 

between nodes of a network [2]. Combining it with IoT, we can 

get to certain forms of mobility that can physically move the 

device. E-Health area became a research zone where multi-

agent systems have been quickly introduced. Also MAS were 

involved when the data is pre-processed on the client-side as a 

model and sent to the server. In this case the client must just 

update the model [3, 4]. This is a “model-to-data” approach and 

was successfully used when dealing with latency and 

processing power. Mobile agents have been also used in 

telemedicine [5]. This approach involves on one hand medical  

services and on the other hand it involves computer and 

communication technologies. In this context, the solution 

advanced here is represented by the design of a safe agent-based 

telemedicine and a P2P networking architecture.  

In this context, the scope of the research work presented in 

this project is to combine multi-agent systems and IoT, having 

together all their advantages. Thus, it was proposed an 

architecture of a medical data based intelligent system that 

processes data and takes different decisions accordingly. 

Different bio-sensors are involved in the hardware part, their 

role being to collect data from a human being (temperature, 

ECG, pulse oximetry, etc.). The server side cumulate the data 

and send it to the certain medical authorities.  

There were three modes of transmission for the mobile 

component: normal data transmission, emergency data 

transmission and audio/video stream. In the first case, the 

periodic medical data is taken from the patient and further sent 

to the cloud by means of MLLP (minimal lower layer protocol). 

The HL7 protocol [6] is used for serialization. In the second 

case, just a set of selected data is sent (2G connections). Some 

parameter thresholds, like minimal O2 level will be relevant to 

decide switching to this mode. In the last case, the user can 

initiate this transmission. 

The e-health platform consists of different biosensors and 

raspberry-pi. The data measured by the sensors will be used for 

real-time monitoring of the patients or to discover threshold 

values for the data that can be further careful be analyzed and 

interpreted as a medical pre-diagnosis. To store the medical 

data, to aggregate and process them, a cloud component is 

included that will allow the medical personnel to access them. 

 The paper is structures in seven sections. After 

Introduction, Section II presents a Cloud server architecture and 

a Mobile client architecture. In Section III we discussed the 

communication protocols and the security aspects of such a 

system. The multi-agent architecture is presented in Section IV. 

We conducted several experiments and the results are analyzed 

in Section V. Some advantages and disadvantages were 

underlined in Section VI. The paper ends with Section VII 

presenting the conclusions. 
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II. THE MOBILE CLIENT AND THE CLOUD SERVER 

ARCHITECTURES  

 

The “Cloud Service” module is the main one of the 

architecture, being responsible with getting data from the 

mobile clients. The server will also process the received data 

and will decide to store it or to raise an event handler for 

notifying the appropriate module if it is necessary or to realize 

the audio/video streaming connection (Fig. 1). 

Nevertheless, reliability and manageability are some of the 

main advantages of cloud computing [7]. These features are 

very important for service-dedicated platforms since cloud 

computing is much more reliable and consistent than in-house 

IT infrastructure. More details can be seen in paper [13].  

The second server module is the web component, having a 

classical MVC architecture. The .Net Core technology have 

also been chosen this time too. The web server works closely 

with the cloud service and it transmits web content to the 

medical staff. SignalR is a technology used by the web 

component that allows different notifications to be sent real 

time to the web browser just in case of the calls made by the 

emergency module.  

Another component that plays an important role is the 

event handler for handling real-time events when the patient’s 

vital signs reach a critical threshold value, or in the case of 

accidents with multiple victims needing emergency medical 

intervention. By sending relevant alerts to specific authorities, 

the staff will figure out the magnitude of the incident and 

respond accordingly. A repository design pattern was 

developed to store data for the web component and the cloud 

service.  

In order to collect data from sensors or from the user, three 

agents were designed and form the mobile client. These agents 

negotiate between them to decide which mode to use in order 

to send the data (Fig. 2): 

● Periodic analyzer agent will take data periodically 

from the sensors and if they are considered relevant, they 

will be sent them to the cloud.  

● Emergency agent has the main role to collect data from 

the sensors and to decide if there are critical parameters. 

● Manual handling agent can override the decisions of 

the above mentioned two agents and it is able to initiate the 

audio/video call to the medical staff.  

 

Fig. 1. The cloud service architecture 

 

Fig. 2. The mobile client architecture 
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III. COMMUNICATION PROTOCOLS AND SECURITY 

ASPECTS 

The MLLP protocol is a minimalistic framing protocol in 

the OSI session layer, over TCP/IP. The purpose of this 

protocol is to work like an interface between HL7 and the 

network using a minimal overhead. Although it is not 

mandatory, this protocol has become a standard for transmitting 

HL7 messages over TCP/IP. The detection and correction of 

errors are realized by the lower level protocols (TCP/IP). The 

HL7 message is wrapped between a leading and a trailing non-

printable character that will not appear in the actual content of 

the HL7 message. 

MLLP has several limitations since the block is framed by 

single byte values. Therefore, all the characters sent throough 

the MLLP block need to be encoded using an encoding that will 

not conflict with the delimiter bytes (usually single-byte 

encodings like UTF-8 are permitted). Also, both the sender and 

receiver need to implement the same encoding, meaning that 

the integration could not be possible unless both parties 

mutually agree on an encoding. Another disadvantage comes 

from the fact that it doesn’t provide any support for encryption, 

since it is a very light protocol, but additional protocols can be 

used on top of its layer (however, the sockets can be encrypted 

using TLS). To ensure security, best practices are to use a VPN 

or a secure IP connection (IPsec).  

HL7 messages can be sent via HTTP as well, as an 

alternative to the standard MLLP. It has important advantages 

since it is widely used among developers, well understood and 

well documented, it is an application layer protocol in the OSI 

stack allowing authentication and it permits a character 

encoding to be set in a standardized way. 

The security via HTTPS is improved, allowing both 

transport-level and message-level security. It is widely 

supported across platforms. 

To conclude, for both security and commodity reasons, 

HTTPS is recommended, but however, MLLP brings up a huge 

advantage: lower bandwidth. After this critical analyze, the 

recommendation for our project would be to use HTTPS for the 

normal data transmission, and use MLLP only for emergency 

data transmission mode, where speed and latency matters. 

Going further with our analyze HL7 v3 is an 

interoperability specification for health and medical 

transactions. Its aim is to support all healthcare workflows. The 

development started in 1995 and the initial publication 

happened in 2005. HL7 v3 is more of a standard than its 

predecessor, version 2, being a less customizable framework. 

However, it is not backwards compatible. The HL7 

organization came up with a newer standard that incorporates 

the best of HL7 v3 while solving problems that the version 3 

had met, called FHIR (Fast Healthcare Interoperable Resource). 

FHIR was built to improve security over a HTTPS layer 

and offers a strongly defined model with easier customization. 

It is based on REST which makes it so much easier to 

implement and use for organizations and developers.  

From the advantages of HL7 v3, we can consider the fact 

that it can be used via MLLP, therefore optimizing the traffic, 

at the cost of security and it is older on the market and more 

widely spread.  

IV. MULTI-AGENT SYSTEM ARCHITECTURE 

This section describes the in-depths for the periodic 

analyzer, one of the most important components of the 

architecture. Its purpose is to analyze data from the medical 

sensors over time, and make decisions to raise a certain warn-

level to the server. Besides the warn level, the system will use 

the “model-to-data” mechanism [4,5] that will help by greatly 

reducing the server processing power, latency and server disk 

size. 

The main logic of the periodic analyzer agent is to use a 

pattern detection mechanism to detect irregularities from the 

medical sensor data. We will use multiple periodic analyzer 

agents, each one running on a separate thread and 

communicating with each other via the “blackboard” 

mechanism. The blackboard represents a shared memory zone 

where every agent can read or write data using thread 

synchronization techniques. Those agents need to coordinate, 

since they share a common goal: detecting irregularities that 

might represent real-life problems in the patient’s medical 

parameters. Therefore, a communication technique is needed. 

Further, having collectively motivated agents with common 

goals, the blackboard system was chosen. 

 

Fig.3 Agent representation (KS = knowledge source) 

A. Agent’s Own Goal 

Before getting to the common goals of the agents, let’s start 

with the purpose of an individual agent. One periodic analyzer 

agent is responsible, in the first place, with the data gathered 

from one medical sensor. So, let us use the example of having 

only one sensor and one agent (let’s take the heart rate sensor 

as a very simple example). The sensor will write a new data 

input every x amount of time. For the heartrate sensor, for 

example, let’s assume that will tick every X seconds, count the 

number of beats, then extrapolates the value for 1 minute to get 

a “fairly” accurate beats-per-minute. That means we get a new 

value every X seconds that we could store in a queue to have 

the whole history of how our heartrate changed over time. We 

will use queue, because it will have a limit depending on both 

memory size and the computational power. For this example, 

we will assume the sensor will send a new value every 5 
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seconds and we have a limit of 720 in our queue. Every time we 

get our 721st value, we will remove the oldest entry from the 

queue so we permanently have only 720 values. That means we 

track the record of the heart-rate for the last hour. 

The agent will work with this queue (a linked-list could be 

used as well, we’ll stick with queue just to make the theoretical 

part easier). Each time the queue updates, the periodic agent’s 

individual purpose is to analyze patterns in this queue and 

detect irregularities. The agent’s logic in detecting patterns 

from only one sensor will be highly scalable and configurable 

from an XML file. For this example, a pattern could be a 

significant raise in the heart-rate every 10 minutes with a one-

minute error tolerance (this pattern is used just for a pure 

theoretical example, it doesn’t mean anything, maybe only the 

fact that the patient is doing some effort every 10 minutes 

within an hour). 

For the detected pattern, the agent could raise a certain 

warn level, for example setting a score for the pattern’s 

importance from 0 to 100. The agent should only handle one 

pattern at a time, for one sensor only. The agent computes the 

pattern every time the sensor ticks, or every x amount of ticks, 

a configurable variable. 

B. Agent’s Common Goal 

The simplest agent model is able to detect one type of 

pattern from one sensor only and assign a score to it. In order to 

achieve more from our medical sensors, the agents can 

communicate with each other in order to detect even more 

complex patterns. On each agent computation time, that 

happens every X amount of sensor ticks, a pattern must be 

computed (that may, or may not be found). Once a pattern is 

found at T(x) (time of tick X), the pattern data will be written 

in the blackboard, to share the knowledge with the other agents.  

The data will contain the pattern ID and the pattern score 

(zero if no pattern was found), in a historical array of patterns. 

This way we can form more complex agents, that are able to 

detect patterns based on both their own sensor data, and on 

other agents’ already computed patterns from T(x-1). As an 

example, a complex periodical analyzer agent could search for 

patterns based on data collected from two other agents, one that 

is monitoring the heart-rate like the one presented earlier, and 

another agent that is searching for patterns in the patient’s 

temperature change. 

This way, every T(x) we have a heart-rate pattern from T(x-

1) and a temperature pattern from T(x-1). As a very simple 

example, if we detect that the patient’s sensor is indicating a 

significant increase in heart-rate every 10 minutes, we can 

assume that the patient is just doing some physical effort every 

10 minutes.  

But if the same pattern occurs in the temperature sensor, and 

we detect a growth in temperature every 10 minutes, in the same 

amount of time (with an error tolerance), we can be even more 

certain that the patient is doing physical activities. 

However, detecting heart-rate increases and constantly 

having a low body temperature, could signal a combined pattern 

with a higher warn level.  

The system will allow multiple pattern configurations and 

will create an agent for each pattern. In this way, we can create 

a pattern based on other patterns, and each agent will work to 

collectively contribute to that complex pattern, forming a 

“pyramid” of agents (Fig.5). 

 

A. Scalability 

The periodic agent’s architecture is highly configurable via 

xml files, therefore patterns can be added dynamically to the 

system. An update mechanism is foreseen to deploy the 

configuration files from the server-side, allowing to easily 

update the agents’ logic with minimal effort and no compiling 

will be needed. The complexity of the agents is scalable only 

depending on the client machine’s performance. A technique of 

computing patterns server-side will be also developed, using the 

“model-to-data” mechanism. 

 

II. EXPERIMENTAL EVALUATION 

For the experiments, the agent implementation has used the 

pulse-oximetry sensor with the Raspberry-pi hardware. The aim 

of the implemented system is to gather data from the sensor, 

analyze it and raise warning levels for each agent accordingly. 

Fig.4. Simple periodic agent architecture 
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The warning levels should be transmitted eventually to the 

cloud and list possible scenarios.  

 Pulse-oximetry is a noninvasive method that continuously 

gathers data and gives estimates of the arterial hemoglobin 

oxygen saturation (SpO2), along with the heartrate that the 

sensor computes with the plethysmographic signal [8]. The 

arterial hemoglobin oxygen saturation from this sensor is only 

an estimate, the standard in getting the SpO2 level consisting in 

performing an arterial blood gas analysis, which is more 

accurate, but also invasive, since it requires a drawn sample of 

arterial blood [9]. The pulse-oximetry sensor is easy to use, 

being usually placed on a finger tip of the patient. It uses a pair 

of light emitting diodes, red and infrared. The de-oxygenated 

hemoglobin will attract more infrared radiation and vice-versa 

for the oxygenated Hb [10, 11]. 

 

Fig.6. Complex periodic agent architecture 
 

A pulse-oximeter measures: SpO2 – the percentage of blood 

that is loaded with oxygen and the pulse rate – beats per minute. 

The pulse-oximetry parameters are: 

● A normal pulse is usually between 60 and 80 bpm 

● Regular arterial hemoglobin oxygen saturation (SpO2) 

should be higher than 95% 

● A SpO2 level lower than 92% means hypoxemia 

● Standard sensor error is around 2% (a value of 82% could 

mean something between 80% and 84%, the values vary in 

time) 

The accuracy of detecting this only by the increased 

heartrate and the SpO2 level is low, but it can increase 

significantly if we add a blood-pressure sensor and an ECG. 

Gathering data 

The pulse-oximetry sensor feeds data periodically, 

refreshing both the heartrate value and the SpO2 level. For the 

heartrate, an integer value is received, representing the BPM 

(beats per minute). For the SpO2, also an integer value is 

received, representing a percentage of blood that is loaded with 

oxygen. Those two data-feeds will be treated separately, and 

every simple-agent connected to this sensor will receive data 

from one of those feeds. 

Heartrate simple periodic agent 

First, we will build a simple periodic agent that will receive 

data from the heartrate feed only. Its only purpose is to detect 

patterns in the heartrates and send warning levels accordingly. 

For each periodic agent, be it simple or complex, we will assign 

warning levels from 0 to 100, 100 being the highest. The normal 

BPM value for a healthy person is between 60 and 80. The aim 

for this agent is to detect anomalies in the heartrate, but the task 

is not easy. A higher heartrate value could mean an increased 

warning level, but it could also mean the individual is just 

practicing some sports, so the BPM will increase for that period. 

The next thing that needs to be taken into consideration, is 

the patient’s age. We shall consider receiving the patient’s age 

as a parameter from some input method, when configuring the 

Fig.5. Agent combination example 

 

687



device. The first parameter is: age = 30. 

TABLE I.  RANGE AND WORN LEVELS FOR HEART RATE 

Range level Range (BPM) Warn level Possible reason 

-5 0-20 0 Sensor error 

-4 20-30 70 Very low pulse 

-3 30-40 60 Very low pulse 

-2 40-50 50 Low pulse 

-1 50-60 30 Low pulse 

0 60-80 0 Normal pulse 

1 80-100 30 Pulse increasing 

2 100-120 35 Pulse increasing 

3 120-135 40 Pulse increasing 

4 135-150 45 Pulse increasing 

5 >150 80 Very high pulse 

 

The maximum heartrate is computed by the following 

formula: max = 220 – age. Therefore, the maximum BPM value 

for a 30 years old patient is 220 – 30 = 190 BPM. The target 

heartrate for exercising is somewhere between 50% and 70% of 

the max heartrate. So, for a person practicing sports, or 

exercising at a gym, for the example above of 30 years old, the 

target heart-rate during exercising is 190*50% = 80 and 

190*70%=133. Therefore, for a 30 years old person, detecting 

a heartrate between 80 and 133 BPM could mean exercising, so 

the warning level for those values will be low. 

 

Fig.7. Detecting a growth in heartrate 

For the heartrate, we have a collection of data from the 

feed, viewed as a key-value pair of <timestamp, bpm>. We will 

define two types of patterns: 

- Progressive pattern – linear growth or decrease of the 

values 

- Repeating pattern – regular increases or decreases at 

the same amount of time 

Detecting a growth in the heartrate can tell us something 

about the patient based on the growth rate. For example, a very 

high growth rate could tell us the patient has suffered some kind 

of shock, while a lower growth rate could mean the patient just 

received some bad news, or started to do some physical activity 

(see Fig. 7). 

A very high growth rate in a heartrate will have a higher 

warn level than a lower one. Therefore, whenever the high 

growth rate is detected, we will add 30% to the warn level. 

Example 1: normal pulse = 60. Grew to 110 over 2 seconds. The 

new warn level will be 35 + 30% * 35 = 45.5. 

We will consider a high growth for the heartrate any growth 

from the normal BPM range (range 0) to a 2 or more range 

levels higher in less than 5 seconds. For a medium growth rate, 

which means more than 5 seconds until shifting ranges, but less 

than 1 minute, we will increase the warn level with 10% only. 

And for low growth rates, we will keep the same warn level 

according to the table mentioned above. Detecting a decrease in 

the heartrate, similar to the growth, can mean something. A 

sudden decrease of the BPM can mean hypovolemia (low blood 

quantity in body). We will consider a sudden decrease any 

decrease from the normal BPN range to a range level of -2 or 

less in under 5 seconds, and we will increase their warn levels 

by 30% (see Fig. 8). 

Example 2: normal pulse = 60. Decreased to 30 over less than 

5 seconds. Warn level will be 60 + 30% * 60 = 78. 

Example 3: normal pulse = 60. Decreased to 0 over less than 5 

seconds. Warn level will still be 0, since this will most likely 

mean the sensor was disconnected. 

For a medium decrease range, we will consider a window 

from 5 to 60 seconds, and we will increase the warn level by 

10%. As for low decrease ranges, we will keep the default warn 

levels. 

  

Fig.8. Detecting a decrease in heartrate 

 

SpO2 simple periodic agent 

 

The SpO2 sensor provides integer values within a range 

from 0 to 100, and an error rate of 2. A normal person has the 

arterial hemoglobin oxygen saturation level higher than 95%. 

Anything lower represents a warning sign. Hypoxemia can be 

called for a saturation level lower than 92%. 
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For the SpO2, we have a collection of data from the feed, 

viewed as a key-value pair of < timestamp, saturation_ 

percentage >. Detecting a decrease in SpO2 level over more 

than 2 hours could mean either a mixt dysfunction or a 

respiratory dysfunction. As an example, a patient with a chronic 

problem like COPD with an usual saturation level between 90 

and 95, who developed recently a pneumonia could raise the 

warning level higher, by hitting a saturation level of 85-90 (or 

even lower) requiring a non-invasive ventilation (CPAP), the 

respiratory effort being too high.  

 
 

Fig.9. The output of a complex periodic agent  

Detecting a sudden decrease in SpO2 level (less than 10 

minutes) could raise the warn level significantly. For example, 

in a myocardial infarction phase, because of vascularization 

decrease of a myocardial zone, the SpO2 level will decrease 

suddenly. Depending on the zone and dimension, the SpO2 

level can decrease more sudden or slower. We consider a 

sudden decrease any shift between 2 range levels that occur in 

less than 10 minutes, with a difference higher than 4 

percentages. 

 

Complex periodic agent - BPM and SpO2 

 

This complex agent's purpose is simple: it needs to combine 

the output of multiple simple agents (2 in this case) and 

aggregate the result or find a pattern in the combined outputs. 

For example, if SpO2 agent reports a low arterial hemoglobin 

oxygen saturation level, and the heartrate agent reports a low 

heartrate, the patient is most likely suffering from a sleep apnea 

[12] (see Fig.9). 

 

III. ADVANTAGES AND DISADVANTAGES 

 

 The main advantage over this solution is the use of the 

complex agents. While other works present solutions of 

monitoring and alerting the parameters from various sensors, 

the proposed architecture will combine the data from multiple 

inputs, getting more accurate warning levels. 

 By just using simple agents, the project acts just like any of 

the existing systems for sending alerts to a centralized system, 

but combining them brings a great improvement. 

 Another advantage is the scalability of the project. More 

agents can be implemented and each agent can request data 

computed from any of the other agents. 

 A disadvantage at this point is the hardware limitation, since 

some part of the data is computed client-side. Another 

disadvantage is that computing data on the server side will not 

be available for the other agents on the client side. 

 

IV. CONCLUSIONS 

 

The paper presented an architecture designed for a medical 

data based intelligent system that processes the collected data 

and takes the right decisions based on them. The work 

emphasized the advantage of multi-agent systems and IoT for 

e-health applications in scalable platforms. It was also 

investigated how cloud-based model can be adopted.  

By using only the pulse-oximeter sensor, the system can 

already use three agents of which two simple and one complex, 

that combined can raise warn levels about a patient based on 

only 2 data feeds: the heart rate, and the arterial hemoglobin 

oxygen saturation level. The warn levels are set accordingly, 

and even if both sensors give a low warn-level, combined, they 

can result in a much higher warn-level that could help detect 

critical situations right in time. The complex agent for the pulse-

oximetry sensor is still not well defined, some medical research 

being needed, but the technical part is in place, proving that a 

complex agent can be used very efficiently by combining at 

least two simple agents, either by interpreting their warn levels, 

either by extracting a pattern based on their outputs. 

In the future works, the architecture will be amplified with 

other sensors like the blood-pressure sensor and ECG. Input 

from those sensors could really improve the warn-level 

accuracy for multiple diagnostics, the most important so far 

being the coronary syndrome. 
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